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Approach  

R. Esmaelzadeh 

 

Abstract— Genetic algorithms have gained popularity as effective search procedures for obtaining solutions to traditionally difficult space 

mission optimization problems. In this paper, a real-coded genetic algorithm is used together with calculus of variations to optimize a 

trajectory for rendezvous problem. The global search properties of genetic algorithm combine with the local search capabilities of calculus 

of variations to produce solutions that are superior to those generated with the calculus of variations alone, and these solutions require less 

user interaction than previously possible. The genetic algorithm is not hampered by ill-behaved gradients and is relatively insensitive to 

problems with a small radius of convergence. The use of calculus of variations within the genetic algorithm optimization routine increases 

the precision of the final solution to levels uncommon for a genetic algorithm alone. 

Index Terms— Trajectory optimization, Genetic algorithms, Hybrid methods, Rendezvous problem. 

——————————      —————————— 

 

1 INTRODUCTION 

ECHNIQUES for1 optimizing spaceflight trajectory 
problems have become increasingly important as 
pressure to reduce the costs of space missions has 

increased. Both direct and indirect methods, known as “hill-
climbing” methods, have been used to optimize space 
trajectories; however, for some scenarios, convergence to 
optimal solution is time-consuming, tedious, and sometimes 
not even possible.  

Direct methods that solve for controls to optimize the 
objective function directly, often via a gradient-based search, 
suffer from two major drawbacks. First, because search 
direction is ultimately driven by the local value of the 
gradient vector, the solution can converge on local, rather 
than global, minima, resulting in a final solution that is not 
globally optimal and cannot be further optimized [1]. Second, 
the optimal solution often has a small radius of convergence, 
requiring that the guesses for the initial parameters be close 
to the optimal answer [2]. 

Indirect methods, such as calculus of variations, obtain 
optimal results by solving for the costates of a related two 
point boundary value problem (TPBVP) and not for the 
controls directly. Although indirect methods are generally 
more likely to find a true, rather than local, optimum both 
direct and indirect approaches share many of the same 
drawbacks, most notably a small radius of convergence [3]. 
The “hill-climbing” methods exploit all local information in 
an efficient way, provided that certain conditions are fulfilled 
and, in particular, that the function to be minimized is “well-
conditioned” in the neighborhood of the unique optimum 
[4]. Such a high level of exploitation requires a lot of local 
information to be known (gradient and, sometimes, Hessian 
matrix): the more intensive the exploitation, the stronger the 
need of specialized information about the function to be 
minimized. Moreover, if the basic requirements are not 
satisfied, the reliability of the “hill-climbing” methods is 
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greatly jeopardized. 
Therefore, it is vital to choose initial parameter values 

intelligently; failure to do so will either dramatically increase 
the required computation or preclude obtaining a solution 
entirely. When indirect methods are used, where the 
optimization parameters are generally not related to the 
trajectory in an intuitive or straightforward manner, there 
may not be knowledge of the parameter bounds or their 
sensitivity. A common strategy to improve initial parameter 
selection uses previously optimized parameter values from a 
similar problem as an initial guess [1]. If no closely related 
solutions exist, initial values are found by optimization of an 
entire series of intermediate problems relating the new 
scenario to one with a known solution, a procedure known as 
homotopy analysis [5]. 

In recent years many techniques have been suggested for 
the avoidance of these shortcomings. A survey of these 
methods can be found in [6]. Evolutionary algorithms (EAs) 
are the best known. The usefulness of the genetic algorithms 
(GAs), for solving impulsive trajectories is well documented 
[7, 8, and 9]. In this paper, the author extends the previous work 

done on rendezvous trajectory optimization [10]. The purpose 
of this study was to investigate the GA's effectiveness at 
determining a near optimal trajectory.   

2 PROBLEM DEFINITION 

The Rendezvous problem is a case that many authors use for 
demonstrating efficiency of diverse numerical methods, see, 
e.g., [11, 12]. This problem is summarized as follows:  

“For a launch vehicle with a constant-thrust rocket engine, 
a, we wish to find the thrust-direction sequence, (i), that 
maximizes final orbital velocity, u(tf), with zero final radial 
velocity, v(tf), and specified final position xf, yf, for zero initial 
conditions and given flight time, tf (Fig. 1).”  

The first order, two dimensional coupled nonlinear 
differential equations of motion for this problem are  

 

T 
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Fig. 1. Nomenclature for rendezvous problem [11]. 
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where (•)=d( )/dt, and g gravity acceleration. The initial and 
final conditions for (1) are: 
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If   is held constant for time intervals of length T, it is 
straightforward to show that  
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3 PROBLEM SOLUTION 

3.1 Analytical Solution 

At first for studying numerical methods' efficiency, an 
analytical solution is derived. The augmented terminal cost 
function is 

)-)(()-)(()()( fxfyv xNxyNyNvNu                         (3)  

where  is lagrange multiplayer. If we measure time in units 
of tf, (u, v) in units of atf, (x, y, xf, yf) in units of atf

2, then we 
can put a=1, T=1/N in Eq. (3). The H(i) sequence is then 
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where  is lagrange multiplayer. The discrete Euler equations 
are then 
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and the optimality condition H(i)=0 yields 
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The adjoint equations are easily solved in this case 
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Substituting (7) in (6) and using NT=1 gives bilinear 
tangent law 
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The constants v, y, and x must be determined to satisfy 
final conditions. The MATLAB function FSOLVE is used for 
this propose. 

 
3.2 Genetic algorithms 

It is clear that we face a parameter optimization problem. 
Many different numerical methods have been suggested for 
solution of these problems, especially in space trajectories 
applications, that can be found in the Betts’s excellent survey 
[3]. In this paper, a case of genetic algorithms (GAs), known 
as floating-point or real-coded GA (RGA), is used. The RGAs 
are a compromise between binary-coded Gas and Evolution 
strategies [13], since they use most of the classical Genetic 
Algorithms mechanisms whereas they work directly at the 
phenotypic level like Evolution Strategies. This RGA 
generally offers the advantages of being better adapted to 
numerical optimization for continuous problems, of speeding 
up the search and of making easier the development of 
approaches “hybridized” with other methods; but it requires 
the development of new “genetic-inspired” operators that 
can be found in [14, 15, and 16]. 

Whereas traditional methods proceed by deterministically 
improving an iteration point, GAs use a random 
“population” of solution candidates, called “individuals,” 
over the entire search space. The features of the best 
candidates are used for generating new populations, called a 
“generation,” with the intent of producing new and better 
candidates. The search aims at optimizing a user-defined 
function (the function to be optimized) called the fitness 
function. This new generation generally consists of 
individuals which fit better than the previous ones into the 
external environment as represented by the fitness function. 
As the population iterates through successive generations, 
the individuals will in general tend toward the optimum of 
the fitness function. This process iterates until one condition 
in a set of convergence criteria is met.  

To generate a new population on the basis of previous 
one, GA performs three steps [16]: a) it evaluates the fitness 
score of each individual of the old population, b) it selects 
individuals on the basis of their fitness score, and c) it 
recombines these selected individuals using “genetic 
operators” such as mutation, and crossover, which can be 
considered as means to change locally the current solutions 
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and to combine them. 
Three important features distinguish the GA approach 

[16]: a) GA works in parallel on a number of search points 
and not on a unique solution, which means that the search 
method is not local in scope but rather global over the search 
space; b) GA requires from the environment only an 
objective function measuring the fitness score of  each 
individual and no other information nor assumptions such as 
derivatives; and c) both selection and recombination steps 
are performed by using probability rules rather than 
deterministic ones; this aims at maintaining the global 
explorative properties of the search. 

The convergence of the repeated selection–crossover–
mutation procedure to the optimal solution is based on the 
schema theorem [17], and Markov chain [18]. However, the 
convergence of GAs is slow, compared to “hill-climbing” 
methods, when the problem is sufficiently smooth for “hill-
climbing” methods to be applicable. This has led to the idea 
of combining the methods, see e.g., [16]. The GA can be used 
for generating a starting point for the “hill-climbing” search. 
Alternatively, the genetic search can be enhanced by 
performing local “hill-climbing” searches on the members of 
the population. 

The use of GAs to determine optimal space trajectories has 
only recently gained popularity. The applications range from 
trajectory planning for launch vehicles to the trajectory 
design of interplanetary missions [1, 12, 19, 20, 21, and 22]. 

The RGA used in this study is similar to that described in 
an orbit transfer problem [22], and simulated with the 
Genetic Algorithm Toolbox (with some modifications) in 
MATLAB 8. The number of nodes, N, for control vector (i), 
i=1…N through entire trajectory must be defined. As [10] has 
assumed, we choose N=10. The RGA task is to find (i) to 
maximize fitness function. 

For satisfying constraint, using penalty function approach, 
the fitness function is designed to evaluate the final position 
and velocity of vehicle at final time as: 
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The term wi are nonnegative penalty factors that are 
chosen by trial and error to be w0=1, w1=6, w2=2, and 
w3=1.025. The basic idea is to assign individuals that have 
small gi(x) a better fitness (or higher |u(tf)|), thereby 
providing them more opportunity to survive. 

By rank method, the raw fitness scores are scaled to values 
in a range that is suitable for the selection function. This 
method scales the raw scores based on the rank of each 
individual instead of its score. The rank of an individual is its 
position in the sorted scores. The rank of the fittest individual 
is 1, the next fittest is 2, and so on. Rank fitness scaling 
removes the effect of the spread of the raw scores. 

The other RGA parameters are considered as: stochastic 
uniform selection with elitism, scattered crossover with 0.8 
probability, uniform mutation with 0.1 probability, 
population size 100, and 50 generations for termination. 

The selection function as stochastic uniform lays out a line 
in which each parent corresponds to a section of the line of 
length proportional to its scaled value. The algorithm moves 
along the line in steps of equal size. At each step, the 
algorithm allocates a parent from the section it lands on. The 
first step is a uniform random number less than the step size. 
The scattered crossover creates a random binary vector and 
selects the genes where the vector is a 1 from the first parent, 
and the genes where the vector is a 0 from the second parent, 
and combines the genes to form a child. The crossover 
fraction specifies the fraction of the next generation, other 
than elite children, that are produced by crossover. 

The uniform mutation is a two-step process. First, the 
algorithm selects a fraction of the vector entries of an 
individual for mutation, where each entry has a probability 
rate of being mutated. In the second step, the algorithm 
replaces each selected entry by a random number selected 
uniformly from the range for that entry. 

The operator known as elitism copies the best individual 
from the previous generation into the new generation if a 
better individual was not created in the new generation, i.e., 
elitism was chosen to prevent the current best solution from 
getting lost. If the individual with the largest value of fitness 
function in the new generation does not outperform the 
preceding generation's elite individual, then the old elite 
individual is copied over the worst performing member of 
the new generation. The elite count specifies the number of 
individuals that are guaranteed to survive to the next 
generation. 

The generations, stopping criteria, specifies the maximum 
number of iterations the genetic algorithm will perform. 

The calculations were repeated several times using 
different seeds to check the repeatability of the optimal 
parameters. However, a detailed Monte Carlo study to 
determine their distribution was not performed. 
 
3.3 Hybrid approach 

GA convergence typically occurred in fewer than 50 
generations. After convergence, we have good initial guess 
for beginning any gradient methods such as DOPC (Discrete 
Optimization with Constraints) algorithm [11]. DOPC 
program performs additional calculations to refine the RGA's 
solution and more precisely define the optimal trajectory. 
This optimization technique consisted of the RGA and DOPC 
program working together to find the approximate location 
of the global minimum, which was further refined by the 
DOPC program to determine a precise solution. It is not 
possible to prove that the final solution obtained is a true 
global minimum [1], but the result can be compared against 
one obtained with different optimization routines, especially 
the DOPC algorithm with the assumption that we have very 
good initial guess, to show that they are superior to or at 
least equally optimal solution. 

 
3.4 Simulation results 

With the assumption of xf=0.15, yf=0.2, and g/a=1/3, the 
optimal trajectories for analytic, GA, and hybrid methods are 
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shown in Fig. 2. the thrust angle histories obtained from 
these methods are compared and shown in Fig. 3. This 
comparison was repeated for state histories in Figs 4 and 5. 
Table 1 shows final conditions reached by them. a good 
harmony can be seen from these figures. The hybrid and GA 
methods reach almost the same position at the same time and 
satisfy final constraints.  
 

 
TABLE 1. TRAJECTORY BOUNDARY CONDITIONS 

Method u f /at f v f /at f x f /at f
2 y f /at f

2 

Analytic 0.4538 0 0.15 0.2 

GA 0.4521 6.7e-4 0.148 0.2 

Hybrid 0.4538 0 0.15 0.2 

 

 

 
Fig. 2. Trajectory comparisons. 

 
Fig. 3. Control comparisons.  

 
Fig. 4. Orbital velocity comparisons.  

 

 
Fig. 5. Radial velocity comparisons.  

4 CONCLUSION 

A real-coded genetic algorithm was used in conjunction with 
a gradient method (DOPC algorithm) to optimize a 
rendezvous trajectory. The reliance of the gradient method 
on earlier solutions and its sensitivity to the quality of the 
initial guesses were eliminated by relying on the genetic 
algorithm to search the parameter space to find the location 
of the globally optimal solution. The DOPC algorithm was 
used to refine the parameter set found by the RGA, 
improving the precision of the final answer beyond what 
would be possible by the use of the RGA alone. to prove that 
the final solution obtained by hybrid method is a true global 
minimum, and for investigation of the genetic algorithm 
solution, the results were compared against one obtained 
with the analytical method. All methods reached almost the 
same position at the same time, satisfied final constraints, 
and had similar control and state histories. Hybrid method 
proposed here is efficient and robust in achieving global 
optimal solution when boundary conditions were treated as 
equality constraints.  
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